Myofascial force transmission causes interaction between adjacent muscles and connective tissue: effects of blunt dissection and compartmental fasciotomy on length force characteristics of rat extensor digitorum longus muscle.

نویسندگان

  • P A Huijing
  • G C Baan
چکیده

Muscles within the anterior tibial compartment (extensor digitorum longus: EDL, tibialis anterior: TA, and extensor hallucis longus muscles: EHL) and within the peroneal compartment were excited simultaneously and maximally. The ankle joint was fixed kept at 90 degrees. For EDL length force characteristics were determined. This was performed first with the anterior tibial compartment intact (1), and subsequently after: (2) blunt dissection of the anterior and lateral interface of EDL and TA. (3) Full longitudinal lateral fasciotomy of the anterior tibial compartment. (4) Full removal of TA and EHL muscles. Length-force characteristics were changed significantly by these interventions. Blunt dissection caused a force decrease of approximately 10% at all lengths, i.e., without changing EDL optimum or active slack lengths. This indicates that intermuscular connective tissue mediates significant interactions between adjacent muscles. Indications of its relatively stiff mechanical properties were found both in the physiological part of the present study, as well as the anatomical survey of connective tissue. Full lateral compartmental fasciotomy increased optimum length and decreased active slack length, leading to an increase of length range (by approximately 47%), while decreasing optimal force. As a consequence an increase in force for the lower length range was found. Such changes of length force characteristics are compatible with an increased distribution of fiber mean sarcomere length. On the basis of these results, it is concluded that extramuscular connective tissue has a sufficiently stiff connection to intramuscular connective tissue to be able to play a role in force transmission. Therefore, in addition to intramuscular myofascial force transmission, extramuscular force transmission has to be considered within intact compartments of limbs. A survey of connective tissue structures within the compartment indicated sheet-like neuro-vascular tracts to be major components of extramuscular connective tissue with connections to intramuscular connective tissue stroma. Removal of TA and EHL yielded yet another decrease of force (mean for optimal force approximately 10%). No significant changes of optimum and active slack lengths could be shown in this case. It is concluded that myofascial force transmission should be taken into account when considering muscular function and its coordination, and in clinical decisions regarding fasciotomy and repetitive strain injury.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Myofascial force transmission also occurs between antagonistic muscles located within opposite compartments of the rat lower hind limb.

Force transmission via pathways other than myotendinous ones, is referred to as myofascial force transmission. The present study shows that myofascial force transmission occurs not only between adjacent synergistic muscles or antagonistic muscles in adjacent compartments, but also between most distant antagonistic muscles within a segment. Tibialis anterior (TA), extensor hallucis longus (EHL),...

متن کامل

Myofascial force transmission between a single muscle head and adjacent tissues: length effects of head III of rat EDL.

Force transmission from muscle fibers via the connective tissue network (i.e., myofascial force transmission) is an important determinant of muscle function. This study investigates the role of myofascial pathways for force transmission from multitendoned extensor digitorum longus (EDL) muscle within an intact anterior crural compartment. Effects of length changes exclusively of head III of rat...

متن کامل

Extramuscular myofascial force transmission within the rat anterior tibial compartment: proximo-distal differences in muscle force.

Intramuscular connective tissues are continuous to extramuscular connective tissues. If force is transmitted there, differences should be present between force at proximal and distal attachments of muscles. Extensor digitorum longus (EDL), tibialis anterior (TA), and extensor hallucis longus muscles (EHL) were excited simultaneously and maximally. Only EDL length was changed, exclusively by mov...

متن کامل

Muscle force is determined also by muscle relative position: isolated effects.

Effects on force of changes of the position of extensor digitorum longus muscle (EDL) relative to surrounding tissues were investigated in rat. Connective tissue at the muscle bellies of tibialis anterior (TA), extensor hallucis longus (EHL) and EDL was left intact, to allow myofascial force transmission. The position of EDL muscle was altered, without changing EDL muscle-tendon complex length,...

متن کامل

Myofascial force transmission: muscle relative position and length determine agonist and synergist muscle force.

Equal proximal and distal lengthening of rat extensor digitorum longus (EDL) were studied. Tibialis anterior, extensor hallucis longus, and EDL were active maximally. The connective tissues around these muscle bellies were left intact. Proximal EDL forces differed from distal forces, indicating myofascial force transmission to structures other than the tendons. Higher EDL distal force was exert...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Archives of physiology and biochemistry

دوره 109 2  شماره 

صفحات  -

تاریخ انتشار 2001